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ABSTRACT

Several aspects of the question of the determination of the phase

of a wavefield from the knowledge of its intensity in the aperture

plane and focal plane of a thin lens are investigated. The role of

diffraction from the lens aperture is studied. It is shown that for

an astigmatic Gaussian beam this method of phase retrieval is highly

nonunique if the beamwidth in the aperture plane is much smaller than

the radius of the aperture. For several test cases, it is shown that

if the beamwidth is not small compared to the radius of the aperture

the above-mentioned nonuniqueness is removed (except for the well-

known twin solution ambiguity). The twin solution is discussed and

a method for eliminating it is proposed.
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I. INTRODUCTION

The question of phase retrieval, that is, of the determination of

the phase of an incoming optical signal, is an extremely important

problem, one which can be approached in several different ways.

One of the most practical methods of phase retrieval is to

attempt to deduce the phase of the wavefield from a knowledge of the

intensity of the field in two different planes: the aperture plane

and focal plane of a thin lens.

In this report we will investigate several aspects of the unique-

ness of the phase retrieval performed by this method, that is, whether

or not the method allows one to uniquely determine the phase of the

incoming wavefield.

The method of phase retrieval under consideration can be described

more precisely in the following way. Let the field in the aperture

plane of the lens (which we take to be the plane z = 0) be written as

V(P0 ,t) = Re [Ua( 0 ) JiWtI

= Re [IUa(P0 )1 eikW(0O)e -iwt ]  (1.)

where PO = (xo9Yo) is the two-dimensional position vector in the

aperture plane, U a(PO ) is the complex amplitude of the field in that

plane, w is the temporal frequency of the field and Re denotes that

the real part is to be taken. The method in question strives to de-

termine the phase kW( 0 ) from the knowledge of the aperture plane

intensity, IUa( O)I2, and the focal plane intensity, 2u P =l
2

is the position vector in the focal plane. From here on JUj will be
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referred to as the amplitude of the field.

Numerical experiments which successfully retrieve the phase from

aperture plane and focal plane intensities have been performed. Gon-

salves treated the one-dimensional focusing problem. He found,

for several test cases, that his algorithm always converged to either

the correct phase or its "twin"' (the twin solution will be discussed

in Section V). Southwell 2treated the two-dimensional problem for the

case of uniform aperture plane intensity, IU(aP 0 2 1, and a phase

described by means of the nine Zernike polynomials corresponding to

tilt, defocus, astigmatism and coma. He found, for several test cases,

that his algorithm produced the correct phase.

Neither of these papers made a definitive statement about the

general problem of uniqueness, that is, about whether or not there

is only one possible phase function consistent with the two known in-

tensities. Until this point is clarified, one cannot be confident that

the phase one calculates is the one occuring physically. In the one-

dimensional problem, some interesting results on the question of

uniqueness have been obtained. 3 ,4 ,5 ,6  However, the two-dimensional

problem is not a straight-forward extension, because physical wave-

functions cannot, in general, be subjected to the method of separation

of variables and furthermore lenses have circular apertures, not

square ones. Indeed, recently the question of uniqueness for the

problem we have described above has been debated in the literature. 
7 ,8

More recently two proofs of uniqueness have been obtained. Foley

and Butts 9have shown that if the wavefield intensity across the lens

is uniform and the phase is represented by means of the nine lowest
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order Zernike polynomials, that the phase can be determined uniquely

(except for the well-known twin solution ambiguity) from its aperture

plane and focal plane intensities. Foley10 has extended this proof to

include aperture plane intensities which are Gaussian.

The purpose of this report is to investigate two aspects of the

uniqueness question. First, using a specific wavefield (an astigmatic

Gaussian beam), we will investigate the role that diffraction plays in

the question of uniqueness. (By "diffraction" we mean that due to the

finite size of the lens, not diffraction due to unobstructed propagation

in free space). It will be shown that this diffraction is responsible

for the uniqueness which arises. Secondly, we will discuss the twin

solution ambiguity and propose a method for eliminating it.



II. PHASE RETRIEVAL FROM INTENSITY MEASUREMENTS

In this section the particular method of phase retrieval which we

are considering, namely the determination of the phase of an incoming

complex amplitude wavefield from the knowledge of the intensities in

the aperture plane and focal plane of a thin lens, will be described

in a more precise mathematical fashion.

2.1 Precise Mathematical Statement of the Uniqueness Problem

Let the wavefield

Vi(',t) - Re {Ui )e-iwt (2.1)

where r = (x,y,z), be traveling towards positive values of z. (From

here on the e t will be omitted, since the field at any position in

space will have this form of time dependence. We will now deal with

complex amplitudes only and refer to them as the fields.) Furthermore

let this field be incident upon a thin lens of focal length f and

radius L, which is located at z = 0 and surrounded by a stop. In this

plane the incident field can be written in terms of its modulus and

phase as

Ui(' O0) = lUi(OO)leikW(PO), (2.2)

where p0 = two dimensional position vector in the plane z = O, k = w/c

and W(p0 ) is a real function of P0" See Figure 2.1. The aperture plane

field (which includes the effect of the stop) is

U a(0 = Ui( 0,O) circ (p0/L) , (2.3)

&L
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Figure 2.1. Thin Lens Geometry.
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where PO= JPo and

1, P < L

circ (P0 /L) (2.4)

0, p0 > L

The field, Uf(), in the focal plane can be found by using

diffraction theory. It turns out to be proportional to the Fourier

transform of the aperture plane field

ikf ikp2/2f

Uf () = e i2 (P/Af) (2.5)fixf a

where A is the wavelength of the light and
a( /Xf) _ -2 (/Xf)' 0 d

(P/Xf) U(P ) e d p (2.6)

It follows from Eq. (2.5) that the intensity distribution in the focal

plane is

If(P) = IUf(-)12

= 1 4-a /f)2
- 212 1(/xf)I (2.7)

The phase retrieval problem can be stated as: given the intensity

distribution in the focal plane and aperture plane of a lens, can we

then uniquely determine the phase of the aperture plane field? Or in

other words, is it possible for two (or more) aperture plane fields with

equal aperture plane intensities but different phases, e.g.,

ikWA(po)U aA(P o)  J Ua(p0) e

La
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U a o= U(p)j eIk B 0

to produce equal focal plane intensities? The equality of the

aperture plane intensities demands that

IUaA(P 0 ) 2 = IUaB(P 0 )I 2, for all P . (2.8)

The equality of the focal plane intensities demands that

f-2= % - 2 -

IUaA(P/f) = IUaB(P/Xf) , for all P. (2.9)

2.2 The Twin Solution

1,3,12
It is well-known that if the aperture plane amplitude is

symmetric with respect to inversion, i.e.,

UC-P0 )I = IUa(P0 )I , for all P0 (2.10)

then there are at least two fields which will have the same intensities

in both the aperture plane and focal plane. They are the field itself,

ikW A PO0 )

U aA(P o  IU a(Po)I e (2.11)

and its "twin",

-ikWA (- 0)
U = IUa( 0)I e . (2.12)

These two fields have the same aperture plane intensities by defi-

nition. Furthermore, as we will shown in Section V,

aB(P/Af) = aA(/ f) , (2.13)

a. P [-A



hence, from Eq. (2.7), we see that they have the same focal plane in-

tensities as well. In Section V we will discuss the twin solution

further. In Sections III and IV we must keep in mind that, since we

will be dealing with fields which obey Eq. (2.10), the twin solution

is always a possibility.



III. THE ROLE OF DIFFRACTION BY LENS APERTURE IN THE QUESTION OF

UNIQUENESS. PART I: RADIUS OF BEAM RADIUS OF LENS

Devaney 8in his paper "On the uniqueness question in the problem

of phase retrieval from intensity measurements" suggested that although

the phase retrieval problem that we are discussing was shown by Robinson 
7

to be nonunique in the limit of geometric optics, it does however appear

to possess a unique solution (except for the twin solution) within the

framework of diffraction theory. Indeed, uniqueness (except for the

twin solution) for the problem we are considering has been proven by

9
Foley and Butts I

In this and the next section we will investigate the role of the

diffraction caused by the lens aperture in the question of uniqueness.

We will study a particular type of incident field, namely an astigmatic

Gaussian beam. In this section we will assume that L, the radius of

the lens, is much larger than the radius of the incident Gaussian beam,

so that there is no diffraction due to the lens aperture. We will find

that this leads to a great deal of nonuniqueness, i.e., several

beams with different phases can have the same intensity in both the

aperture and focal planes. In the next section we will treat the case

where the beam radius is not negligible compared to L and we will see

that, except for the twin solution, all the nonuniqueness is removed.

3.1 Astigmatic Gaussian Beams

Let us now investigate the case where the incident fields is an

astigmatic Gaussian beam. The incident field can be written as
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u i(, 0) A(p0 ) e kW , (3.1)

where

A(P0 ) W e (3.2)

is a normalized Gaussian amplitude, and the phase function W(P0) can

be represented by the expansion,

5
W(Po L a Z (o/L) . (3.3)

Jul j 0

The a' s are expansion coefficients and the Z 's are a set of modified

Zernikk polynomials13

ZI('P0/L) - xO/L ,(3.4a)

1 00

Z2('o/L) = y0 /L , (3.4b)

Z3 (POoL) f2(p/L) 2 1 , (3.4c)

Z4 (P 0/L) = (x0 /L) - (Y0/L) , (3.4d)

Z5 ( 0/L) = 2(xo/L)(y 0 /L) (3.4e)

Each of these terms has a meaningful physical interpretation. The

first two terms represent, respectively, the tilt in the x and y directions.

The third term corresponds to defocus and the last two terms represent,

respectively, 00 and 450-astigmatism.

Substituting Eq. (3.2), (3.3), and (3.4) into Eq. (3.1), we then

have



f2 -O2W02 [x +ay+a3(22

U-p2/W e O exp ik 0  a 2 Y0  a 3 (2Po - 1)

a4 (x0
2- YO2)  2a5xoYo(3

+ L+ L2J . (3.5)

Furthermore for the sake of mathematical convenience we can drop the

linear terms in Eq. (3.5), since their only effect would be to shift

the focal plane field distribution by x f -a f/L and y = -a 2 f/L.

Eq. (3.5) can then be written as

2i~0 O J eP 0 2W 22 2 2 2
U 2 -002/W 0 exp{ik[a3 (PO

2  L2) + a4 (x0 2 yO

+ 2a5XoY0 ]} , (3.6)

where

2
a3 - 2a3/L , (3.7a)

2
a4  a4/L (3.7b)

2
a5 

= a5 L2 (3.7c)

Throughout the rest of this report our incident field will be of

the form of (3.6). Note that a3 measures the defocus, a4 measures the

00 astigmatism and 5 measures the 450 astigmatism. The tilt terms

(aI and a2) are needed only if the focal plane intensity pattern is

not centered about x - y - 0.

3.2 Propagation of an Astigmatic Gaussian Beam Through a Thin Lens

(Infinite Aperture)

3.2.1 Astigmatic Gaussian Beam with a - 0
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Let us first consider the case where a5 - 0, since a5 5 0 can be

reduced to the same form (this will be shown in the next subsection).

The field on the left hand side of the lens can then be written as

S-p 02wo
2 ika3(p02 - L 2) ika 4(x0

2 - y0 2)
UiP00)= e e e

0

- ika3L2  2 2 lx 2 /2R0 2 ,
e 3 e e e (3.8)

where

1/R = 2(a3 + a4 ) , (3.9a)

I/R = 2(a a . (3.9b)

The effect of the lens is to change the wavefront curvature by an

amount -1/f. 14  Therefore the field on the right hand side of the lens

is + -ikp0 
2/2f

U0 A Ua(OO) e

. ika3L
2  22 2 2+

- _e _3 x0 W0  ikx0 /2R
ee e

7F w0
-02/02eikY0 2/2Ry0

xe e (3.10)

where

/R+  I /R- 1/f , (3.11a)
x0 x 0
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IR - l/R- - 1/f (3.11b)
YO YO

In Eq. (3.10) we have used the fact that Ua(P O) = Ui(P0 ,O) for the

case of an infinite aperture. If we now use the complex radius of

15
curvature notation , Eq. (3.18) can be rewritten as

U(F0 - ika3L ikx 0 2/
2qxO iky0 2/2qy0

0('Oe e e, (3.12)

where

+ 2
I/qx 0 = I/R + iA/W 0  (3.13a)

I/q = I/Ro + iA/wW02 (3.13b)
y0  YO 0

3.2.2 Beam propagation (z > 0)

We are now ready to calculate the field in any plane z - constant

> 0. We will use the Fresnel diffraction integral,
16

ikz ,+ i(-0 /z~0
U(~~,z) =~-I0 U( 0,*e 2 2

e ik i .,+,0 /2z 2
fixz U(PoO e e d p0. (3.14)

It follows in a straightforward manner, 15'17 after substituting (3.12)

into (3.14), that the resulting field is

i,(z) -x 2/W2 (z) ikx 2/2Rx(z) -y 2/W2 (z) iky 2/2R (z)
_F2,ee e e- e ee e

U(ZW (z) W (z) (3.15)
x y

where

Wx(Z) W0 J (1 + z/R& )2 + (z/zR )2 (3.16a)
0 .

-- -- t . .ad &tF, , ,.. ... ii* , , 'l S
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Wy(z) = W0 J(i + zIR; )2 + (Z/Z)2 (3.16b)

(1 + z/R )
2 + (Z/ZR)

2

R 0 2 (3.17a)x (/Ro)(1 + z/R ) + (z/z2 )

x 0XO

(+ z/R) 2 + 2

R Wz (3.17b)
Ry (Ii /R)(1 + z/R0) + (z/z2)

z R = IW02/X , (3.18)

(z) - k(z - Va 3L
2) - 4x(Z) - ;y(z) , (3.19)

and an () a-1 [ X/iW 0
2  1

= tan I/ + 0 2 (3.20a)x (O1R 0 + Ilz)

(Ile + 11z)

The intensity is therefore

I(P,z) u (p,z) U(Pz)

2 e-2x2/W x 2 (z) e-2y2 /w y 2 (W (3.21)

r W(z) W (z)Wxy

From Eq. (3.21), we see that for any particular z, the isophotes (con-

tours of equal intensities) are specified by

x2/W (a) + y /Wy (z) - constant,

|~~ ~~~~~~ ~ "y.. ... . . . -II .. i .. >* :-:':'' 'fl " "-i-'' "i "- l"''" - . .,.f~. . .,
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which are ellipses which can degenerate into circles if W (z) = W (z).
'C y

Circular isophotes (if they occur) are observed at only one particular

value of z > 0. This circular image is called the circle of least

confusion.

3.2.3 Propagation of a General Astigmatic Gaussian Beam

Let us now investigate the case where a5 is not generally zero.

(We will be following formalism similar to that developed by Cook.
18)

The field on the left side of the lens can then be written as

2 1 -PO /W0
2 ikW(pO) (

Ui(P 0O0) e e (3.22)

where

WOO 3 (P02 ; L)2 + a4 (x0  - y0 ) + 2a5 0Y0 , (3.23)

As in Sec. 3.2.1 we can now write the field on the right hand

side of the lens as 2
U(O - ) 0-ikp/2f

-0 2/W0
2 -ikp0

2 /2f ikW(pO )

i 2 e e e (3.24)
W0

Using the Fresnel diffraction integral, the field for z > 0 is

eikZe I k 2 /2z U(0+) eik 0
2 /2z [-ik .

U(iz) = iz - )e exp ( . yy0)Jdx0dY0

(3.25)



16

Substitution of Eq. (3.24) into (3.25) yields

ikz ikp2/2z p P 2 /W02 -ikp02/2f ik '2/2z ikW( oe e /2 1 0 0 -k 0  0po0U(,z e
Se e e e

0

x exp A (xx0 + yy0 )] dx 0 dyo . (3.26)

The term e makes this integral nonseparable and different

from the integral we encountered earlier. Thus, we have to go to a

rotated coordinate system in which this term vanishes in order to make

the integral separable.

Let us now rotate the aperture plane coordinates and the observation

plane coordinates counterclockwise by an angle 8 about the z-axis. In

order to do this we now define a new aperture plane coordinates, (x0,Yo),

and a new observation planes coordinates, (x,y), according to the trans-

formation equations,

x0 fi x 0cos8 + y0sin8

Y0= -x0sine + y0Cos8 , (3.27)

and

x = xcosO + ysinO ,

y = -xsin8 + ycos8 . (3.28)

The old coordinates are then given in terms of the new coordinates

according to

X ffi 0 Cosa - y0 sin8

yo = x0 sin
o + y0 cos o (3.29)
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and

x = xcose - ysin8

y = xsine + YcosO (3.30)

18
It is a straightforward matter to show that if 6 is chosen accord-

ing to

cot2e = a 4 /a 5 , 0 < 2e < (3.31)

2ikci5xOYo

then in the rotated frame the term e is eliminated. Indeed,

in the rotated frame the field specified by (3.26) transforms to

22 2 2
ikz ik 2/2z F -020/Wo2 - iko2/2f ikp0 /2z

U(x,yz) = e e -_ e e ei x z W 0 -

+ -(-o2 2) -k -d
Sexp IkA[c13(PO' ! L') a 4(~ x 20] o exp LIi (xx + o x0Y

ik(z - cI 3L2) ikp2/2z ek72 -2 i 02/2z
e 0 e e= e iX W0 z 0Y 02 0

x exp [- zk  (x- 0 + y 0 )] d 0 ,y

(3.32)

where

P- -2 =2 (3.33a)

P = O2 2 (3.33b)

a 4 = a4 cos26 + a5sin2 ' (3.34)

/q - I + ix/nW0 (3.35a)hR X o 'W0

- i-~-
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+2

1/q = 1/RO + iW/NW , (3.35b)

1/Rt = 2(ct3 + E4 ) - 1/f (3.36a)

0

l/.. = 2(c 3 - 4 ) - 1/f (3.36b)

y0

Eq. (3.32) has the same form as Eq. (3.14) with Eq. (3.12) substituted

into it. It then follows that

2 2 2 2 2 2r2 i(z) -i21W_2. (z) ik1 /2R_(z) -y /W_ (z) ik- /21L(z)x xyy

U5,T, z) = e e e e e

(3.37)

where

W- -(Z) W0  J( + z/R-+) 2 2 (3.38a)

W() =1W0 J(l + z/R_+)2 + )2 (3.38b)

0
(1 + z/R )2 + (z/zR)

R_(z) = + + 2 (3.39a)
x (1 + z/_)/R_+ (z/zR)

x0  
x0

( Yo/..)2 +C/R

R'(z) = (I + z/R-+)/IR- + 2 (3.39b)

(/R)YO YO

(z)= k(z - a 3 L2 ) - *x - *p , (3.40)

and
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= (3.41a)
1/R- + 1/z

-= tan[ x /rW 2  (3.41b)+/-- + 11z
YO

The intensity in the rotated frame is then given by,

-2ix-2/W-x (z) -2y2 /W -2/(z)
-(-x,-,z) = 2 e -e (.2

T W-(z) W-(z) (3.42)
x y

It follows then that for any particular z, the isophotes are generally

ellipses (Figure 3.1) in a rotated plane. It also follows that circular

isophotes (if they occur) are observed at only one particular value of

z > 0.

3.3 Nonuniqueness in the Case of an Infinite Aperture

The uniqueness question asks: can two (or more) astigmatic beams

with equal aperture plane intensities but different phases, e.g.,

U 2 po/Wo2 ika3P 2 ikci4(xo
2 

- YO2) ika5 2xoyo

UaB( O) = 2 1 -po2/Wo2 ika P 2 ikB4(Xo - YO2) ik 52XoYo

aB 0 e se se e

generate identical focal plane intensities? It follows from Eq. (3.42)

that the two fields will have the same focal plane intensities if their

x and y beam widths are equal in the focal plane,
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Figure 3.1. Elliptical isophotes for cases with a5 0.
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W--xA(f) = W_-B(f) (3.43)

x x

WyA(f) = W_ (f) , (3.44)
y y

and the rotation angle of the focal plane isophotes are equal,

A B
SA e (3.45)

By using Eq. (3.38), (3.36) and (3.34), Eq. (3.43) - (3.45) can be

written as

4(a)+2 2 2(+7F42)

34(3  C 4 ) + (1/zR) = 4(a +4) + (1/zR) (3.46)

j4(a 3 - O4) + (1/zR)2 = ]4(83 - 4) + (1/zR) 2 (3.47)

4 = 4 (3.48)

a5  05

Tables, 1, 2, and 3 list all the possible solutions to this set

of equations. Table 3.1 gives all the possibilities for the case of

a4 
= 0, Table 3.2 gives all the possibilities for the case of a = 0

and Table 3.3 gives all the possibilities for the case where both a3

and c4 are not equal to zero.

It is apparent from Table 3.1 that in this case there are an

infinite number of fields which will duplicate the intensity created

by the field a3 #0 , a4 = a5 = 0, since we are free to choose 84 to
Ja2 42

be anything, as long as 5 
= + 3 - 4 . The same is true for some

of the solutions in Table 3.2. This occurence of an infinite number

0'"
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of solutions is caused by the fact that all the fields created by the

solutions in Table 3.1 and Table 3.2 produce circular isophotes (see

Appendix A) in the focal plane. Hence, since the aperture plane field

is also circularly symmetric any rotation of this incident field (which

corresponds to a different 04and therefore a different a will leave

the focal plane field unchanged as long as 54and 5are related in

the manner stated above. Thus, in practice, if you have an astigmatic

beam incident upon a thin lens where L >W0 , and you see circular iso-

photes in the aperture plane and focal plane there is no hope of

determining the phase of the incident field.

Table 3.3 corresponds to fields which create elliptical isophotes

in the focal plane. Here there are only four possible solutions: two

distinct solutions, each with its own "twin"

In order to get a physical feel for these four different solutions

we set a5= 0 and look at the propagation of these four beams. The four

incident fields are listed in Table 3.4, along with their x and y

curvatures. From the table we see that these incident fields all have

the same magnitudes for their x curvature and their y curvature; the

differences among the solutions is in the signs of the curvatures.

The beam widths in the x direction and y direction, W x(z) and W (z),

are plotted as a function of z in Figures 3.2 - 3.5 for z values near

the focal plane. The following values were used: W 0 ftJ cm.,

A = 6328R, f =10 cm., a 3 = .375A9 a 4 = -1875A and a5= 0. Note:

since a 5 = 0, 6 = 0 and therefore there is no need to use the rotated

coordinate frame. Each of the four beams is quite distinct, except at

the point z =f =10 cm. Here the four beams have exactly the same
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W and W and hence, the same intensity (6 = 0 for all four beams). Thusx y

in practice, if you have an astigmatic beam incident upon a thin lens,

where L>>W O, and you see circular isophotes in the aperture plane and

elliptical isophotes in the focal plane, you cannot specify which one

of the four beams is the one occuring physically.

Indeed, since the second solution is the twin of the first solution,

we could not discern between them even if the aperture was smaller (as

long as the aperture is circular). Likewise with the third and fourth

solutions. If the aperture is small, we can discern between these two

groupsof solutions, however. This will be shown in the next section.
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*3  C 4  C 5 83 B4  85

0 0 0 84 3 4

3 0 0 0 a4 -2------------- --- ---- ----

3 0 0 3  0 0

3  0 0 3 0- -- 0-

Table 3.1 All the possible solutions for
the case with a4 = 0.

a3 '4 '5 83 S4  05

o 0 0 84 R_ 4 :

o 0 0 0 0

o 0--- 4 ------ o

0 C4  0 -cl 0 0

0 0 a5  0 8_ ....

0 0 a 5  0 - 4--- _____4

0 0 a 5  a _ - 0 0

0 0 a5  -a5 0 0o o o ol 0_o _0_
_0_. 4  5 _aa _ + a_ - 1,

------------------£
0 a a5 0 2 + Ai 2-44 5

0 a4  a 5  0 0

4 5 ___T_010_----- _0_----

Table 3.2 All possible solutions for
a 3 = 0.
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a3  a4  aL_5  B3  84 a85

a a a aaa3 4 5 3 4  5

a3  a4  a5  -a3  -a4  -a 5

a 3  a ... -.. I

Table 3.3 All solutions for a3 fO and
4 0.

Field in Aperture Plane X Y
_________________________Curvature Curvature

2 ik(2 1 13k 3+4)x 0  3-4Y

A(O) e 2(a3+a4) 2 (a3-0'4)

-ik(a 3 +a 4 )x2 -ik( 1 -1

A(P )e i 2(a3+a4) 2(a3_04

2 2 -1 1A('0)e-ik(a 3 +a4 )xe (a+3 -a4 )y 2(c3-a4 )

Table 3.4. Field and curvature in the x and y direction
in the aperture plane for solutions that
generate elliptical isophotes in the focal
plane. A(2 0 ) 1 - P0 2 /W0

2

AO -'W e 0  0

Fin 0
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Figure 3.2. Propagation of beam width in the x and y direction for
solution 1 of Table 3.3. a- .375X, a 1875X, a 0,

3. -f 4n5

WO M -2 cm1 0c adX 62R
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IV. THE ROLE OF DIFFRACTION BY LENS APERTURE IN THE QUESTION OF

UNIQUENESS. PART II: RADIUS OF BEAM > RADIUS OF LENS

In the previous section we have seen the nonuniqueness which

arises when diffraction from the lens aperture plays no role in the

propagation of the astigmatic Gaussian beam through a thin lens. In

the present section we are going to look at what happens to that non-

uniqueness as we decrease the size of the aperture such that diffraction

from the aperture now plays an important role.

Figure 4.1 depicts the physical situation we are considering in

this section. An astigmatic Gaussian beam is incident upon a thin lens

of radius L surrounded by a circular aperture of variable radius, sL,

where 0 < s < 1.

The effective radius of the lens is then sL. The resultant

focal plane intensities generated by incident fields which generated

identical focal plane intensities for the case W 0<<L will be studied

for various values of s.

4.1 Calculation of If(p)

The incident field we will be using in this section is the same

as that of Section III,

2 22 2 20 YO

2 1 - 2/W 02 ika3 2(p0 /L) 2-1 ika4 ( 
2 - ) ika 52xOY0 /L2

Ui(O 0) T0 e e e L L e
0

2 eika3 L 2/2 - 'O2/WO2 ika 3 P0
2 ika 4 (x - YO2) ika5 2xoYo-Oe e e e

(4.1)

kkI
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where

S2a3/L2 (4.2)
-L 2 3/

*4 = a4L 2 4 (4.3)

* 5 = a 5/L 2 (4.4)

The aperture plane field is therefore,

Ua(2P1 Act 0 -k3L 2 /2 -p0 2/W 0 2e ik a
3 pO 2 ik a

4 (x 0  - y0  ika 5 2x 0 Y0

Ua (p e e ee e

xcirc (P0 /sL) . (4.5)

Looking at Eq. (2.5) and (2.6) we see that the focal plane intensity

is given by

If(P) = IUf(P)I

2f2 Ia(P/f) 2 (4.6)

where

-2ii(P/Xf).P 2
Ua(P/xf) G Ua()e d p0 • (4.7)

Defining the spatial frequencies according to

= p/Af (4.8)

we see that in order to calculate If(p),
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a() f'jUa( 0) e2 iZ ' O d 2 pO (4.9)

the two-dimensional spatial Fourier transform of Ua(PO), must be evaluated.

Since Eq. (4.9), with Eq. (4.5) substituted in, is not amenable to ana-

lytical evaluation we must evaluate it numerically.

The evaluation of U a(, as given in Eq. (4.9), was performed by

using a fast Fourier transform (FFT) algorithm to do the discrete Fourier

transform (DFT) of U a(p 0). The particular subroutine used was subroutine

19
FFT developed by Posey in 1969 at Mississippi State University. This

20
subroutine uses the FFT algorithm of Cooley and Tukey . For further

details on the application of this subroutine to the problem we are con-

sidering, see reference 21.

4.2 Uniqueness in the Phase Retrieval Problem

We are now ready to look at the effect of the size of the aperture

on the solutions of the previous section. Throughout this section we

are going to look at astigmatic Gaussian beams of wavelength X = 6328R,

passing through a thin lens of radius 4 cm. and focal length 10 cm. The

beamwidth in the aperture plane is taken to be W 0 = J cm.

Except for Figure 4.2 all the intensities computed in this

section have as their input the function Ua(p0 ) sampled at the points

P0  (-8 cm. + mA, - 8 cm. + nA)

where

m = O,1,2,...,M-1

n =0,1,2,....,-

h.. *. .m
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and A = .125 cm., M =N 128. Also, except for Figure 4.2, all the

focal plane intensities plotted out in this section correspond to the

following focal plane points:

4-1

P- (-2 cm1 + -,-2 cm1 + ai) Xf
MA NA

where M, N and A are as specified above and

p = 0,1,2,...,64

q = 0,1,2,... ,64

4.2.1 Effect of Diffraction on a Solution with Circular Isophotes

in the Focal Plane

In this subsection we compare the focal plane intensities generated

by two fields which, according to Table 3.2, have different phases but

produce the same focal plane intensities if W <<L. In particular we
0

compare the focal plane intensities generated by

Fiel A:a 4 =75,a 3 = a5 = 0

Field B: a 3 75X, a 8=a = 0

for two different stop values.

Figures 4.2a and 4.2b show the focal plane intensities generated

by Field A and Field B, respectively, for s =1. In this case WO =472

cm and sL =4 cm, so W0 is a good deal less than sL and the two fields

create the same focal plane intensity patterns. (Note: In these two

figures the input function was sampled at M -N = 128 and A =.0625.
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The focal plane intensities are plotted over the region -4Xf < x < 4Xf,

-4Xf < y < 4Xf.)

Figures 4.3a and 4.3b show the focal plane intensities generated

by Field A and Field B, respectively, when the stop is reduced to 14.

The two focal plane intensities are now quite different from each other.

Indeed, Field A no longer creates a circularly symmetric intensity

pattern.

Clearly, the nonuniqueness which was present when the beam was

much smaller than the lens aperture is eliminated when the aperture

plays a significant role. We have found this to be the case for each

of several examples taken from Table 3.1 and 3.2 and expect it to be

true in general except, of course, for the case where Field B is the

twin of Field A. It will be shown in the next subsection, however,

that in practice there exists a limit on how small the stop can be

made in order to demonstrate this uniqueness.

4.4.2 Effect of Diffraction on a Solution with Elliptical Isophotes

In this subsection we compare the focal plane intensities generated

by two fields, which, according to Table 3.3, have different phases but

produce the same focal plane intensities if W0<<L. In particular we

compare the focal plane intensities generated by

Field A: a3= .375X, a 4 = 1875X, a 5 = 0

Field B: a83 = -1875X, a84 = .375X, a5= 0

for several different stop values. Similar results hold true for cases

where a 5 0 0 and 85 0 0, except in a rotated frame.
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Figures 4.4a and 4.4b show the focal plane intensities generated

by Field A and Field B, respectively, for s = 1. In this case W 0 =J- cm

and sL =4 cm, so W0is a good deal less than sL and the two fields pro-

duce the same focal plane intensities.

Figures 4.5, 4.6 and 4.7 each compare the focal plane intensities

generated by the two fields. The stop values for the three sets of

figures are s = 3/8, -, 4 respectively. Clearly, due to the diffraction

from the aperture, Field A and Field B no longer produce the same intensity

pattern and the nonuniqueness which was evident in Figure 4.4 has been

eliminated.

In Figure 4.8 the stop has been decreased even further, to s = 1/8.

Here the two fields again generate the same focal plane intensity

patterns, so there is some limit upon how small we can make the stop

and still demonstrate the uniqueness. Physically, what is happening

in this case is that the aberration and the stop are so small that the

aperture plane fields for Field A and Field B are almost identical.

It should be noted at this point that decreasing the sign of

the stop will never allow us to distinguish between two fields which are

twins of each other, e.g., the first and second solution in Table 3 or

the third and fourth solution of that table. More will be said in the

next section about the twin solution and a method for eliminating it

will be suggested.
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Figure 4.4. Focal plane intensity: stop 1.
a) a 3 - -375X, a -. 1875X~, a 5 -0
b) 0- .1875X, .375X~, $ 0
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Figure 4.5. Focal plane intensity: stop =

a) a 3 - .375A, a .1875X, a 5  0
b) 0 3= .1875X, = .375X:, , = 0
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a)

Figure 4.7. Focal plane intensity: stop =

a) a3  .375X, a4  .1875X9 Q5 -0
b) 8 3 -. 1875X, 84 -375X, 85 0
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Figure 4.8. Focal plane Intensity: stop -1/8.

a) a 3 .-375A, a -. 1875A, a5 . 0
b) 03 - .1875A. A 4 .375A, 6 5 . 0



V. SUMMARY AND TWIN SOLUTION

In this section the "twin solution" ambiguity will be discussed and

a method to eliminate it will be proposed. As we saw in Section III, the

twin solution is always possible for the types of aperture plane fields

we have used so far. In fact, the twin solution is always possible for

any aperture plane field that has inversion symmetry.

5.1 Summary and Twin Solution

Phase retrieval problems for cases where the incident field is in

the form of an astigmatic Gaussian beam have been studied. It was found

that for cases where the radius of the beam is much smaller than the

radius of the lens, phase retrieval is nonunique.

More precisely, for cases where the aperture plane and focal

plane intensities are circularly symmetric, there exists an infinite

number of solutions to the phase retrieval problem if the focal plane

intensities have circular isophotes. If they have elliptical isophotes,

then there are only four possible solutions to the problem, two

distinctly different solutions, each with its own "twin".

For the numerical examples we did, letting the lens be surrounded

by a circular aperture of significant radius (in comparison with the

beam radius) will then reduce the nonuniqueness to only the twin solution.

We shall now discuss the twin solution further. Let us now

consider the incident field

ikW(,p
0 )

UiA(PO) = IUI(P0,O)I e (5.1)

and its twin



45

-ikW(-O O)
U iB(PoO ) = Ui (O,O )[ e (5.2)

The corresponding aperture plane fields are

U aA(,O0 U UiA(P0,O)P(,p O) , (5.3)
(PO (5.3)

aB(PO) - UiB(o,0)P(p0 ) , (5.4)

where P(po) represents the pupil function.

It follows from Eqs. (5.1) - (5.4) that

ikW(p 0)
uI aPQo)I e (5.5)

U B(' 0 4U.(P 0)1e-ikW(-p0 ) (5.6)UaB(o)  IUa(Po)I e(.)

where

Ua(OO -- IUi(;0,O) P('O) (5.7)

Theorem

If

IUa(-P)I - lUa(PO)l for all p0  (5.8)

then

ba?(&) -[i1C()] , for all (5.9)

Proof:

It follows from Eqs. (5.5) and (5.6) and the definition of the

Fourier transform that
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~~~ikW(' 0) -2ni'.0
UaA(Z) -- jIUa(P0)I i(P e ed 2  , (5.10)

-ikW(- O  -211E*.O0

aB a0 0
UaB(Z) = f (lUa(PQ)I e e d p0o (5.11)

-*

If we define n' = -U, Eq. (5.11) can be rewritten as

J ~ ~()Ie e . (5.12)aB Go l a

Using Eq. (5.8) in Eq. (5.12) yields

= -ikW(n) 2wi&. n d2n

(5.13)

aB ) = [la(')l ] *e

it follows from Eq. (2.7) that

IfB(P ) = IfA(P) for all p (5.14)

From Eqs. (5.7) and (5.8) we see that if

Iui(--o,0)1 Iui( oO)I , (5.15)

and

P(-PO) = P(O O) , (5.16)

then J U(--") I Ua()1 and the twin solution will occur.

Note that all the incident fields discussed so far have circularly

symmetric intensities and thus satisfy Eq. (5.15). Also, the circular

aperture used satisfies Eq. (5.16). As a result, twin solution is

always a possibility in Section III and IV.

If the pupil function is not of the type in Eq. (5.16), then the
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theorem will not be applicable. Therefore, if we have a nonsymmetric

pupil, the twin solution might not occur. In the next section we will

look at one particular example where this is true.

5.2 An Example with Nonsymmetric Pupil

A numerical example of the same nature as in Section IV was

performed to determine the effect of a triangular aperture on the twin

solution of the incident astigmatic Gaussian beam with =3 0,c = .75X

and a5 = 0, X = 6328R and W0 - F2 cm. The aperture used was an equi-

lateral triangle inscribed into the lens aperture for a lens of radius

1 cm and focal length 10 cm.

The focal plane intensity for the corresponding aperture plane

field is computed in the same manner as in Subsection 4.4.2 and plotted

out in Figure 5.1a together with the plot for its "twin" in Figure 5.1b.

It is evident from the plot that for this particular case, the use of

a nonsymmetric aperture eliminates the "twin solution" ambiguity. More

studies must be made before any general statement can be made about the

use of nonsymmetric aperture to eliminate the "twin solution".
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a) ~ ~ /

01~

b)

Figure 5.1. Focal plane intensity, triangular aperture.
a1) c1 '~ 0CL 4  .75Xa 0
b) 0 3 -O, 84 -75X, 5=0



APPENDIX A

CIRCULAR ISOPHOTES IN THE FOCAL PLANE FOR SOLUTIONS IN TABLE 3.1 AND

TABLE 3.2

The intensities in the focal plane for an astigmatic Gaussian

beam incident on a thin lens is given by Eq. (3.42) with z f,

2 2 2 2

T~i,,z 2 = e X e (A.1)1T Wx MWy(f

where

W-(f) = W (1+ f ) L) (A.2a)x 0 R x+ R

W f)= W J~+ f )2 +( i) 2 ,(A.2b)

Looking at Eq. (A.1) we see that I f () is circularly symmetric if

and only if

W-(f) = W-.(f) (A.3)
x y

Substituting Eq. (3.36) into Eq. (A.2) we then have

W-M L1 IA fJ4 + j.741 2 1 L)2(A4

C- 0 (a3 4)

W-(f) = W f J4(_ 4) 2~ + 1 _ ) 2 (A.5)
y 0 (3 z ZR
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Thus, for cases with 4 U 0 (Table 3.1), or a3 0 (Table 3.2) it follows

that

Wx(f) = I(f).
y

Hence, for these cases, the focal plane intensities are circularly symmetric.
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